An Estimate for the Multiplicity of Binary Recurrences
نویسنده
چکیده
We use a refined version of Roth’s Lemma, proved with the help of Faltings’ Product Theorem, in order to give an upper bound for the multiplicity of a binary linear recurrence. Résumé Nous utilisons une version du Lemme de Roth, provenant du Théorème du Produit de Faltings, pour majorer la multiplicité d’une récurrence linéaire binaire. Version française abrégée Dans l’article [7] H.-P. Schlickewei donne une majoration, indepéndante du corps des nombres, de la multiplicité d’une récurrence linéaire binaire. La contribution principale à cette majoration est exprimée par une version, pour la droite projective, du théorème du sousespace de Schmidt. Nous améliorons cette majoration en utilisant la même méthode, mais faisant appel à un Lemme de Roth plus puissant, démontré à partir d’idées liées au théorème du Produit de Faltings ([4], [3], [6]). Même si ce résultat n’est pas comparable à la majoration remarquable obtenue récemment par F. Beukers et H.-P. Schlickewei [2], elle montre jusqu’à quel point on peut arriver en utilisant les techniques du théorème du sous-espace de Schmidt dans ce contexte. Nous démontrons, Théorème 1.1. Soient a, b, α, β nombres complexes, tels que au moins un entre α, β n’est pas une racine de l’unité. Alors il y a au moins 2 entiers m ∈ Z tels que aα + bβ + 1 = 0. Pour démontrer ce théorème il nous faut la proposition suivante. Soit S un sous-ensemble fini de MK contenant les places à l’infini. Pour tout v ∈ S nous donnons deux formes linéaires L1,v(x), L2,v(x) ∈ {X1,X2,X1 + X2} et deux nombres réels e1,v, e2,v tels que ∑ v∈S(e1,v + e2,v) = 0, et pour tout sous-ensembles S ′ of S, et chaque (i(v))v∈S′ avec i(v) ∈ {1, 2}, | ∑ v∈S ei(v),v |6 1. Ce sont les conditions (3.1) − (3.3) de [7]. On obtient, Date: August 12, 1997.
منابع مشابه
Diophantine Equations Related with Linear Binary Recurrences
In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...
متن کاملRiordan group approaches in matrix factorizations
In this paper, we consider an arbitrary binary polynomial sequence {A_n} and then give a lower triangular matrix representation of this sequence. As main result, we obtain a factorization of the innite generalized Pascal matrix in terms of this new matrix, using a Riordan group approach. Further some interesting results and applications are derived.
متن کاملSensorless Speed Control of Switched Reluctance Motor Drive Using the Binary Observer with Online Flux-Linkage Estimation
An adaptive online flux-linkage estimation method for the sensorless control of switched reluctance motor (SRM) drive is presented in this paper. Sensorless operation is achieved through a binary observer based algorithm. In order to avoid using the look up tables of motor characteristics, which makes the system, depends on motor parameters, an adaptive identification algorithm is used to estim...
متن کاملStudy of structural effects of binary mixtures of Nitrobenzene and 2-Alcohols
Densities, structural effects and viscosities of binary nonelectrolyte systems including nitrobenzene + 2-propanol, 2-butanol and 2-pentanol at temperatures (293.15 to 323.15) K and normal atmospheric pressure were measured using an Anton-Paar SVM 3000 stabinger viscometer. Excess molar volumes and viscosity deviations Δη were calculated and correlated by the Redlich-Kister equation to estimat...
متن کاملStudy of structural effects of binary mixtures of Nitrobenzene and 2-Alcohols
Densities, structural effects and viscosities of binary nonelectrolyte systems including nitrobenzene + 2-propanol, 2-butanol and 2-pentanol at temperatures (293.15 to 323.15) K and normal atmospheric pressure were measured using an Anton-Paar SVM 3000 stabinger viscometer. Excess molar volumes and viscosity deviations Δη were calculated and correlated by the Redlich-Kister equation t...
متن کاملLinear Recurrences of Order Two
where the A{ are rational integers, is called an integral linear recurrence of order k. Given such a linear recurrence and an integer c, one would like to know for what n does f(n) — c? In a very few particular instances (e.g. see [2], [6]) this question has been answered, but in general the question is very difficult. A less exacting problem is the determination of upper and lower bounds on th...
متن کامل